A Split Step Approach for the 3-d Maxwell’s Equations

نویسندگان

  • JONGWOO LEE
  • BENGT FORNBERG
چکیده

Split-step procedures have previously been used successfully in a number of situations, e.g. for Hamiltonian systems, such as certain nonlinear wave equations. In this study, we note that one particular way to write the 3-D Maxwell’s equations separates these into two parts, requiring in all only the solution of six uncoupled 1-D wave equations. The approach allows arbitrary orders of accuracy in both time and space, and features in many cases unconditional stability.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some unconditionally stable time stepping methods for the 3-D Maxwell’s equations

Almost all the difficulties that arise in the numerical solution of Maxwell’s equations are due to material interfaces. In case that their geometrical features are much smaller than a typical wave length, one would like to use small space steps with large time steps. The first time stepping method which combines a very low cost per time step with unconditional stability was the ADI-FDTD method ...

متن کامل

On the split-step method for the solution of nonlinear Schr"{o}dinger equation with the Riesz space fractional derivative

The aim of this paper is to extend the split-step idea for the solution of fractional partial differential equations. We consider the multidimensional nonlinear Schr"{o}dinger equation with the Riesz space fractional derivative and propose an efficient numerical algorithm to obtain it's approximate solutions. To this end, we first discretize the Riesz fractional derivative then apply the Crank-...

متن کامل

Mechanical Response of a Piezoelectrically Sandwiched Nano-Beam Based on the Non-Local Theory

This article deals with the mechanical analysis of a fixed-fixed nano-beam based on nonlocal elasticity theory. The nano-beam is sandwiched with two piezoelectric layers through it’s upper and lower sides. The electromechanical coupled equations governing the problem are derived based nonlocal theory considering to Euler-Bernoulli beam assumptions and based on the nonlocal piezoelectricity acco...

متن کامل

Stability of two classes of improved backward Euler methods for stochastic delay differential equations of neutral type

This paper examines stability analysis of two classes of improved backward Euler methods, namely split-step $(theta, lambda)$-backward Euler (SSBE) and semi-implicit $(theta,lambda)$-Euler (SIE) methods, for nonlinear neutral stochastic delay differential equations (NSDDEs). It is proved that the SSBE method with $theta, lambdain(0,1]$ can recover the exponential mean-square stability with some...

متن کامل

Multiscale modeling via split-step methods in neural firing

Neuronal models based on the Hodgkin-Huxley equation form a fundamental framework in the field of computational neuroscience. While the neuronal state is often modeled deterministically, experimental recordings show stochastic fluctuations, presumably driven by molecular noise from the underlying microphysical conditions. In turn, the firing of individual neurons gives rise to an electric field...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003